20-EECS-2077	SEMICONDUCTOR DEVICES		
Required/Elective	Required for EE majors		
Catalog Data	20-EECS-2077. Semiconductor Devices. Credits 3. Fundamentals of semiconductor		
	diodes and transistors; static characteristics, biasing, carrier flow and small-signal		
	models. Light emission and detection with semiconductor	junctior	IS.
Prerequisites	Network Analysis, Semiconductor Physics		
Prerequisites by	1. Basic calculus, chemistry, MATLAB, circuits		
Торіс	2. Energy-band diagram and carrier concentrations		
	3. Fermi level, carrier drift and diffusion		
Textbook	B. Streetman, S. Banerjee, Solid State Electronic Devices,	Prentice	e Hall; 6 edition
	(August 5, 2005).		
References	R. F. Pierret, Semiconductor Device Fundamentals, Addise	on-Wes	ley, 1996, 2 nd Ed.
	D. A. Neaman, Semiconductor Physics and Devices: Basic	e Princip	oles, McGraw-Hill,
	2011, 4th Ed.		
Goals	Students will examine and understand the operation of sen	nicondu	ctor devices and the
	fundamental processes underlying their operation and desi	gn.	
Topics	1. Semiconductor and Band diagrams (1 lecture).		
	2. Semiconductor Currents (1 lecture)		
	3. Diodes (4 lectures)		
	4. Bipolar Junction Transistors (4 lectures)		
	5. JFET / MESFET / HEMTs (1 lecture)		
	6. MOSFETS (3 lectures)		
	7. Optical Semiconductors (1 lecture)		
	8. Photodiodes and Photovoltaics (1 lecture)		
	9. LEDs (1 lecture)		
	10. Organic Semiconductors and Devices (1 lecture)		
	11. Lasers (1 lecture)		
T - h 4	12. CCD and CMOS Imaging Devices (1 lecture)		
Laboratory Clean Saladala	None		
A DET Outcomes	Class meets 2 times per week for 75 minutes.		
ABET Outcomes	a, e, K		
Chicatiwas	Students will: 1. Communication data in a chamical concents that according to the formation ductor.		
Objectives	i. Comprehend the basic electrical and chemical concepts that govern semiconductor innetions with another semiconductor a metal, or an avide and a metal (a)		
	2 Be able to apply knowledge of junction based and field affect transistors. (a)		
	2. Be able to apply knowledge of junction-based and field-effect transisions. (a)		
	s. Be able to synthesize transistor function through utilization of a corresponding		
	4 Be able to apply MATLAB or other graphical computing tools to plot transistor		
	electrical characteristics (k)		
Computer Usage	MATLAB for solution of equations and graphical		
Professional	Engineering science: 2.4 credits or 80%		
Component	Engineering design: 0.6 credits or 20%		
Prepared by	Jason Heikenfeld, Ph.D.	Date	Jan. 6, 2015
Approved by Under	graduate Council	Date	<i>,</i>